In Focus: Uses and Limitations with using Digital Photography for Pressure Ulcer Staging in the Acute Care Setting

Joan Warren PhD, RN-BC, NEA-BC

Centered on You MedStar Health

MedStar Health

Wound Photography Investigators

- Elizabeth Jesada, MS, CRNP, CWON
- Dorothy Goodman, BSN, RN, CWOCN
- Ruth Iliuta, MS, RN, CNS-BC, CWON
- Maureen McLaughlin, PhD, RN
- Lauren Myers, BSN, RN, CWOCN
- Gail Thurkauf, MS, RN
- Joyce Johnson, PhD, RN, NEA-BC, FAAN
- Larry Strassner, PhD, RN, NEA-BC

Specific Aim

- Examine whether a digital photo could reliably convey the characteristics of a pressure ulcer
- Multi-rater agreement used to compare bedside assessment of pressure ulcer by certified WOCN to assessment of the same wound by a panel of experts.

Research Questions

Question 1:

What is the level of agreements between scores on the BWAT 13 characteristics and total score of the bedside assessment and the digital photo assessment?

Question 2:

What is the level of agreement between NPUAP stages of the bedside assessment and the digital photo assessment?

Question 3:

Is there a difference in how CWON's rate characteristics and stage the pressure ulcer based on their background?

Problem/Background

- Digital photography:
 - Used in home care & longterm care settings
 - Used for nursing education
 - Tool for legal and clinical documentation of wounds
 - Allow access to wound specialist via telemedicine

Problem/Background

- WOCN Society has neither recommended nor discouraged use of photography
- Emphasized need for clearly written guidelines & standards

Need to build a foundation for digital photography use in acute care settings

- Assessed inter-rater reliability of 13 characteristics and staging of pressure ulcers
- Compared direct CWON onsite observation of the wound with visual inspection of a digital color photograph
- Photograph sent via internet to expert panel of three CWONs for assessment
- Approved by MedStar Health and Georgetown Institutional Review Boards.

Study Design

• A non-experimental, cross sectional, correlational study

Setting

- General & critical care med/surg nursing units at two of the MedStar Health System hospitals
 - Georgetown University Hospital (609 licensed beds)
 - Franklin Square Hospital Center (380 licensed beds)

Sampling Plan & Size

- Non-probability sampling plan
- Convenience sample of **69** adult inpatients at the **2** hospitals
- 100 pressure ulcer photographs

Wound Photographer Preparation

- Twelve RNs (6 from each site) received 6 hours of training in the techniques of wound photography by an experienced medical photographer
- Following training, each RN assessed for competency by the medical photographer through return demonstration
- Wound photography competency validation conducted using established guidelines
 - Developed by Buckley, Adelson, & Hess (2005)

Instruments

- <u>Bates-Jensen Wound Assessment Tool</u> (BWAT)©
 - Measures 13 Wound Characteristics

Tissue Edema	Drainage Amount	Drainage Type
Necrotic Tissue Amount	Granulation	Epithelialization
Necrotic Tissue Type	• Size	• Periwound
Tissue Induration	Wound Edge	Undermining
• Depth		

Instruments

- National Pressure Ulcer Advisory Panel
 - Definitions for staging were used (2007)

• Suspected deep tissue injury (SDTI)	• Stage III
• Stage I	• Stage IV
• Stage II	• Unstageable

Data Analysis

- Descriptive techniques
 - Frequencies
 - Measures of central tendency
- Inter-rater reliability analysis
 - Percent agreement
 - Spearman rho correlation
 - Cohen's kappa
- Additional analyses
 - Chi square to assess for differences among the CWONs
 - Linear regression for potential confounding relationships of wound evaluators
 - Study sites on total BWAT scores

Demographic Data

- 7 CWONs served as wound evaluators
 - 3 as panelists at off-site locations
 - 4 as direct observers at MedStar hospitals

Location

- Consistent with literature
- 74% of the wounds located on sacrum/coccyx and the heels

Research Question #1

"Level of agreement between BWAT characteristics and bedside photo assessment"

- The kappa coefficients for the 13 characteristics ranged from *slight* to *moderate* agreement
- Wound characteristics that could be observed and quantified had the highest percent agreements and kappa coefficients

Table 2: Kappa Interpretation

Kappa	Agreement
< 0	Poor
02	Slight
.214	Fair
.459	Moderate
.679	Substantial
>=.8	Outstanding

Table 1: Inter-rater Reliability for Bates-Jensen Wound Assessment Tool

% Item Agreemen	Panelist 1		Panelist 2		Panelist 3					
	Agreemen	Spearman Correlation	Kappa	% Agreement	Spearman Correlation	Карра	% Agreement	Spearman Correlation	Kappa	
Size	60%	0.75	**	51%	0.77	**	55%	0.80	**	**
Depth	53%	0.73	**	61%	0.69	**	54%	0.67	**	**
Edges	42%	0.34	**	42%	0.32	**	36%	0.34	**	**
Undermining	78%	0.41	**	79%	0.53	**	77%	0.53	**	**
Necrotic Tissue Type	69%	0.84	0.60	60%	0.70	0.49	50%	0.67	0.37	0.37 - 0.6
Necrotic Tissue Amount	66%	0.83	0.54	66%	0.81	0.53	65%	0.70	0.49	0.49 - 0.54
Exudate Type	43%	0.55	0.24	58%	0.57	0.32	67%	0.48	0.41	0.24 - 0.41
Exudate Amount	41%	0.58	0.23	54%	0.73	0.37	57%	0.58	0.26	0.23 - 0.37
Skin Color Surrounding Wound	47%	0.24	0.17	37%	0.19	0.21	37%	0.05	0.12	0.12 - 0.21
Peripheral Tissue Edema	93% *	0.23	**	96%*	0.33	**	93% *	-0.04	**	**
Peripheral Tissue Induration	80%*	0.19	**	97%*	**	**	95%*	0.32	**	**
Granulation Tissue	49%	0.48	0.34	49%	0.40	0.28	58%	0.51	0.41	0.28 - 0.41
Epithelialization	74%	0.16	0.14	66%	0.31	0.21	72%	0.25	0.17	0.14 - 0.21
NPUAP Stages	62%	0.64	0.48	69%	0.68	0.58	55%	0.39	0.39	0.39 - 0.58

Research Question #2

"Level of agreement between NPUAP stages and bedside photo assessment"

- Inter-rater reliability was deemed fair to moderate
- Kappa coefficients for NPUAP stages ranged from 0.39 to 0.58
- SDTIs had the highest level of agreement
- Percentage agreements on stage III and IV pressure ulcers were *higher* than stage I and II pressure ulcers
- Using digital photos as visual record to depict the staging proved to be highly problematic

Table 3: NPAUP Percent Agreement and Kappa Coefficients

	NPUAP-P1	NPUAP-P2	NPUAP -P3	
Stage I	5 %	5 %	0%	
StageII	1 %	2 %	1%	
Stage III	8 %	9 %	13.1%	
Stage IV	13 %	13 %	6.1%	
Unstageable	4 %	6 %	5.1%	
SDTI	31 %	34 %	30.3%	
Kappa	.484	.581	.393	
<i>p</i> -value	.000	.000	.000	
Interpretation	Moderate agreement	Moderate agreement	Fair agreement	

Research Question #3

"Difference in how CWON's rate characteristics and stage the pressure ulcers based on their backgrounds"

- No statistically significant differences between offsite panelists and MedStar wound evaluators
- Great amount of variability in years of work experience as RN & CWONs existed among hospital & panelist wound evaluators

Table 4: Comparison of Wound Experts: Independent Samples t-test

	t (df)	Sig (2-tailed)
Number of beds	1.1 (4)	·33
Years experience as RN	.68 (5)	.52
Years experience wound care RN	.75 (5)	.49
Years certified as WON	1.1 (5)	.33
Average # PU/week	1.7 (5)	.14
Years experience wound photo	.45 (1)	.73

Conclusions

- Results indicate that a <u>photograph alone</u> <u>cannot accurately</u> and <u>reliably convey</u> the characteristics of a pressure ulcer
- SDTIs and unstageable pressure ulcers had the highest level of agreement

Conclusions

Practice Implications

- Bedside assessment continues to be the "gold standard"
- Digital photo in combination with clinical assessment may increase the accuracy of the assessment and documentation

Conclusions

Research Implications

- Exploration and research on wound imaging systems is needed
- Recognizes the current limitations of digital photography use for pressure ulcer staging

References

- Administration on Aging. (2010). A Profile of Older Americans: http://www.aoa.gov/AoARoot/Aging_Statistics/Profile/2010/docs/2010pr ofile.pdf. Accessed August 3, 2011.
- Bates-Jensen, B. (1990). New Pressure Ulcer Status Tool. Decubitus, 3(3):14-15.
- Bates-Jensen, B.M., Vredevoe, D.L., & Brecht, M.L. (1992) Validity and reliability of the Pressure Sore Status Tool. Decubitus, 5(6): 20-28.
- Buckley, K.M., Adelson, L.K., & Hess, C.T. (2005). Get the picture! Developing a wound photography competency for home care nurses. Journal of the Wound Ostomy Continence Nurses Society, 32(3):171-177.
- Buerhaus, P.I., Auerbach, D.I., & Staiger, D.O. (2009). The recent surge in nurse employment: causes and implications. Health Affairs, 28(4): 657-668.
- Centers for Medicare and Medicaid Service (2008). Preventable hospital-acquired conditions, including infections. Fed Register, 73(161): 48473.
- Deb, P. (July 15, 2010). Trends in case-mix in the Medicare population. Presentation to: American Hospital Association, Federation of American Hospitals, Association of American Medical Colleges;

References

- www.aha.org/aha/content/2010/pdf/100715-CMItrends.pdf. Accessed August 3, 2011.
- Kennedy, K. (1994). Nursing home technology. Photographic documentation of wounds. Nurs Homes, 43(8): 43-44.
- Krainski, M. (1998). Photography in nursing. Am J Nurs, 98(9): 16BB-16EE.
- *Landis JR & Koch GG. (1977). The Management of Observer Agreement for Categorial Data. Biometrics,
- 33(1): 159-174
- National Pressure Ulcer Advisory Panel (2005). FAQ: Photography for pressure ulcer documentation. www.npuap.org/DOCS/PhotographyFaq.doc. Published 2005. Accessed August 3, 2011.
- National Pressure Ulcer Advisory Panel (2007). Pressure ulcer stages revised by National Pressure Ulcer Advisory Panel. http://www.npuap.org/pr2.htm. Accessed August 3, 2011.
- Wound Ostomy & Continence Nurses Society. (March 31, 2009). Focuses on preparing the next generation [press release]. Mount Laurel, NJ: Thomas Reuters;. http://www.reuters.com/article/pressRelease/idUS154261+31-Mar-2009+PRN20090331. Accessed August 3, 2011.

Questions or Comments?

Joan Warren, PhD, RN-BC, NEA-BC Director, Nursing Research Franklin Square Hospital Center

443-777-7957 joan.warren@medstar.net